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1 Introduction

This chapter will give a small introduction on what the thesis and the implemented
application is about. This covers an explanation for the application’s motivation and
the environment the application will be used in.

1.1 Motivation

For internet based interventions (IBIs, 2.1) having noticeable impacts on the men-
tal health of patients, the usage of these IBIs is expanding. Following this trend,
the Institute of Psychology and Education, Department of Clinical Psychology and
Psychotherapy at Ulm University (KLIPS) want to use these for research purposes.
Offered tools of other suppliers do not fit for the use of KLIPS as they are lack-
ing needed features and flexibility. They either do not provide the ability to create
and use own interventions, are expensive to use or do not provide enough flexibil-
ity as needed by KLIPS. Hence, the goal is to create a software system covering
the needed requirements to offer the ability to support the institute’s research. To
provide even easier access to IBIs for patients, the software system should follow
the concept of Internet and Mobile based Interventions (IMI, 2.1). The outcome
expected in terms of user acceptance and results of the treatment are even higher
due to the usage of the IMI concept.

For this purpose, a plan for a software system was created to provide the support
described above. The software system should offer the ability to create and manage
IBIs and to guide and observe the patients participating in them. For easier devel-
opment and handling, the system was planned to be split into four different parts,
each of them described more precisely in Section 1.2. Each part will be devel-
oped separately but all parts will work together to build one big functional software
system.
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1 Introduction

1.2 Use-case

The system should consist of following parts: the Content Management System
(CMS), the back-end server, the E-Coach platform and the Patient-Module, with
the last mentioned part being the topic of this work. This chapter will cover the
tasks of these parts and how they will work together. For better understanding of
the Patient-Module’s tasks inside this software system, each part will be described
below.

The first part is the Content Management System (CMS). This browser website al-
lows its users to create and manage interventions and their corresponding lessons.
Its task is to create and manage interventions used by the software system. This
module will only be available to editors. These are a group of people having the
right to create and manage interventions and will most likely be members of KLIPS.

The E-Coach platform is responsible for providing all functionality e-coaches need
to guide their patients through their interventions. E-coaches are a group of peo-
ple authorized to accompany patients through their therapy. This usually requires
a medical education since all data collected of users is private and further actions
might concerning the patients treatment might be needed. Just as the CMS, the
E-Coach platform is a browser-based website. The platform allows e-coaches to
handle the interaction with their patients and to assign and invite patients to inter-
ventions.

The Patient-Module embodies the patients’ access point to the sytsem. It shows
patients their interventions and provides all functionality to be able to participate
in them and provides the ability to interact with the corresponding e-coach. This
module can be used by any kind of user.

The back-end is a web-server providing all data used by the other system parts and
linking them together. All data created by the three other parts is stored on the back-
end and exchanged through it. Taking the current planning for the software system
into account, the CMS, E-Coach platform and the Patient-Module will not directly
communicate with each other but will communicate with the help of the back-end.
The data will be send to the back-end and from there to the corresponding platform.

Given this architecture of the software system, the application described in this work
will require the other parts to work as intended since it will need data provided by
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1 Introduction

the CMS and the guidance and administration of the E-Coach platform. Assuming
that these requirements are met, the application will interact with the other parts
through the back-end by loading the corresponding information, providing the ability
to participate in interventions and send created data back to the back-end. All data
used by the application is provided by the back-end. This whole process can be
observed by the corresponding e-coach using the E-Coach platform.

3



2 Fundamentals

For better understanding of the thesis, the following will define and explain funda-
mental information for for the thesis.

2.1 Internet Based Interventions And Internet And

Mobile Interventions

Internet based Interventions are a psychological treatments with a relatively short
history [1]. The concept of IBIs is that patients regularly login to a platform in form of
a website or any other form of online application, which provides a series of online
modules, further referred to as lessons. These lessons usually have to be com-
pleted in a given time period, belong to a corresponding intervention and completing
them unlocks following lesson. Usually, these lessons include questionnaires con-
cerning the personal problems of the patients. These problems refer to the needed
medical treatment for the patient. For example, a patient might suffer from tinnitus.
IBIs provided for him will most likely include questions about this specific illness.
This provides better understanding of the patient’s condition for the e-coach and
can help finding better fitting treatments. This is also expected to help the patient
directly by getting patients to confront themselves with their illness.

IBIs can be divided into two categories, which can be distinguished by lessons
being guided or not. Guided lessons include contact to a therapist who will be
embodied by e-coaches in this software system. This implies mainly the guidance
given through the e-coach’s involvement by adding the patient to new interventions
and giving feedback for finished lessons. The amount of time, which is needed by
the therapist for this guidance, depends on the intervention itself.

4



2 Fundamentals

As access to basic health-care is not as widely spread as expected [26], IBIs provide
the ability to reach out to those who do not have access to health-care. Providing
anonymity and easy accessibility through the internet, this concept offers a suitable
alternative for clients with psychological problems to seek out for help or do not
want to see a doctor in person. Research has shown that the outcome of IBIs is
comparable to those of face-to-face therapy [26]. Possible gains could be examining
clearer clinical profiles of patients and even evaluating other models of therapy.

The major advantages gained from IBIs are the possibilities to provide anonymity
for patients that might not be ready to visit therapy. Furthermore, IBIs are way more
cost-efficient than face-to-face therapy as a result of therapist guidance not being
needed compulsorily and taking less time if needed. Additionally, therapists can
observe the progression of patients more easily throughout their participation in
IBIs.

In addition to IBIs, Internet And Mobile Interventions are used to extend the pos-
sibilities of IBIs. IMIs follow the same principle as IBIs, but extend the platform for
online interventions to mobile devices. This can be achieved through SMS or mo-
bile applications provided for users. One example for the achievements provided
through IBIs can be viewed in [17]. By providing IMIs for patients with depression,
beneficial effects on the patients could be detected.

2.2 The Concept Of Cross-Platform-Applications

Before being able to understand the design of the application, the concept of Cross-
Platform-Applications has to be explained, since the application follows the idea of
this concept.

Cross-platform software is software that is designed to run on more than
one combination of hardware and software. For example, Adobe Cre-
ative Cloud and Microsoft Office 365 can run on macOS and Microsoft
Windows. - [19]

Usually, different platforms require different implementations of the application since
each platform uses its own application programming interface (API), thus forcing
the developer to implement the same application multiple times, each version fitting
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2 Fundamentals

for one platform. This process is resource- and time-consuming as implemented
systems cannot be reused on other platforms.

One way of reducing the amount of time and resources needed to implement a
Cross-Platform-Application is using Cross-Platform Frameworks.

Frameworks are a way of delivering application development patterns
to support best practice sharing during application development [...]. A
framework is a reusable design expressed as a set of abstract classes
and the way their instances collaborate. It s a reusable design for all or
part of a software system. - [16]

Following the message of this statement, frameworks provide application-specific
software to provide a standard way to build and deploy applications. In other words,
they assist the developer in developing software by providing additional functionality.
As the name already describes, Cross-Platform Frameworks provide functionality to
make the application work on different platforms.

The essential property of these frameworks is that the application only has to be
implemented once for all platforms. This does not mean that the software will run
on all existing platforms. Rather, frameworks define the platforms on which the soft-
ware will run. This is usually achieved by different deployment of the application for
each platform, which is done by the framework. For the software project introduced
in this thesis, the Cross-Platform Framework Ionic was used. The framework will be
introduced more precisely in Section 4.2

Summarizing, Cross-Platform-Applications are software products working on a spec-
ified number of specified platforms, usually realized through Cross-Platform Frame-
works, that enable the implemented software to run on different platforms without
the need to implement the application for each platform separately.

Although taking off work for the user, cross-platform applications usually restrict the
possibilities for implementation as it has to run on all defined platforms. For this
purpose, the framework has to make compromises in terms of available function-
ality. While implementing on native languages for a platform, the developer can
use all available functionality offered by the programming language and the frame-
work as it will work guaranteed. By trying to implement functionality for multiple
platforms whose functionalities differ, the developer has to take into account that
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the implemented functionality might not be available on all platforms. Implementing
functionality not supported on a platform might either result in the framework not ac-
cepting the source code or in the occurrence of errors on the concerned platform.
Furthermore, this condition might lead to unexpected behaviour or even to failure of
the application. This is especially important for applications running both on mobile
as well as on desktop or browser. Mobile devices may have more possible func-
tionalities accessible by a cross-platform framework than for example the browser
platform. Mobile devices such as smartphones usually have access to a camera
which does not exist on the browser platform. Implementing the functionality of tak-
ing a picture with the camera in a cross-platform application might result in errors
when using the browser platform.

7



3 Requirements

Before starting with the implementation itself it is crucial to know the requirements
the application should meet and within what environment it will be used. Although
a basic list of requirements was given at the start, some of these were not defined
fully and were described more precisely at a later point.

After having talked about the basic amount of requirements with the supervisor of
this project, a meeting of the KLIPS institute for the application was held. In form of
a brain-storming session, future plans for the application were collected. However,
the requirements collected in this meeting were very future-orientated and are not
realistic as requirements for this first version of the application due to limitations in
technology and the fact that the time for the implementation is limited.

Having collected all requirements from the meeting, a final list of requirements for
the first version of the application was assembled. The result being the require-
ments defined below. These mainly consist of requirements collected in the brain-
storm session but also requirements added by the project’s supervisor for the pur-
pose of simplifying future work on the application by other developers. Since most
of the requirements collected in the meeting are very future-orientated, it is very
likely that the application will be extended in the future.

The requirements can be separated into two different groups. These are functional
and non-functional requirements. Both groups will be presented in the following.
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3 Requirements

3.1 Functional Requirements

Functional requirements define the quantity of functionalities the software applica-
tion must meet. These describe the behaviour of the application in certain situations
and the possibilities the user has with the application. In other words, functional re-
quirements define what the user is able to achieve with the usage of the application.
In the following sections, the functional requirements for the application will be de-
scribed more detailed.

3.1.1 Cross-Platform: Browser, iOS, Android

This requirement was already mentioned in Section 2.2. It defines the software to
be a cross-platform-application. Given that users should have easy and fast access
to the functionality of the software system as described in Section 1.1, the decision
was made to implement a mobile application. Mobile applications run on mobile
devices such as smartphones and tablets.

Mobile devices mainly run on two different operating systems (OS). These are An-
droid and iOS. iOS is Apple’s OS for mobile devices, mainly used for Apple products
such as iPad and iPhone. While Apple uses its OS mainly for their own products,
Android is an open source software developed by Google. This property led to An-
droid being used by other mobile device manufacturers, such as Samsung, Huawei
or HTC. Since these are the OSs for mobile devices most widely spread, they were
selected as platforms this application should run on. Because not all users might
have a mobile device being able to run the software, the browser platform was
added to the requirements additionally. This means that the application should also
run inside browsers like Google Chrome or Mozilla Firefox.

Counting together, this makes the total number of three supported platforms: iOS,
Android and Browser.
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3.1.2 Basic Account-System

Before being able to add the actual functionality the application should provide, a
basic account system needs to be implemented. The purpose of this system is the
differentiation between users and to ensure that each user will only be presented
his own data. Each user might have different interventions he is participating in. To
be able to unlock the corresponding interventions for each user, the back-end of the
system needs to be able to distinguish between different users. For this purpose,
each account created should be globally unique.

For this system to work as intended, the account system has to provide the ability
to create new accounts and login to already existing ones. To ensure that users
are distinguishable, it has to be ensured that users only have access to their own
accounts.

Considering that the back-end saves the provided account data and already pro-
vides the functionality of registration and login, the Patient-Module application needs
to link client and server for this functionality. The back-end also defines the way this
functionality can be accessed. For a successful registration, a HTTP request con-
taining a globally unique email address, a globally unique account name and two
entries of the same password is needed. To login to an existing account, the appli-
cation needs to send a HTTP request containing the email and the password for the
corresponding account. The application needs to provide the ability to send these
request with all required data to the back-end.

In terms of data integrity and security described in Section 3.2 it is crucial that only
authorized users have access to an account, implying that only authorized users
can login to an existing account. Further, it has to be ensured that the user enters
an email address that is actually his own considering that the application or the
application’s back-end contacts the user via email for the purpose of informing the
user. After having created and confirmed an account, the user may login and use
the actual functionalities provided by the application.

10
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3.1.3 Account Administration

Account administration implies the functionality to change personal information.
This excludes changing the email address for the sake of keeping the identity of
the user. However, the user does not need to enter his personal information com-
pellingly. Saving data like the age or sex should be optional. To be able to use the
system, the user has to enter his email address and an account name. This data is
required for the usage of the system.

3.1.4 Multilingualism

Considering that the users of the application will most likely be of international origin
it is elementary to provide the ability to switch between different languages inside
the application. For this purpose, the back-end already allows data to be transferred
in more than one language. The user needs to have the ability to choose in which
of the available languages he wants his data to be transferred. This data includes
interventions, lessons and the question-elements of the lesson.

Furthermore, the user needs to not only choose the language of the data but also
the language of the application itself. Given that the application will most likely be
used for research purposes at Ulm University, the most used languages will most
likely be German and English. Although most users might be fluent in the english
and / or german language, it is likely that more languages will be added in the future
to ease up the usage for people having trouble with these languages. This implies
that adding new languages should be an easy task.

3.1.5 Authorization And Authentication

As already stated in Section 3.1.1, the account system is used for the back-end
being able to distinguish the users it is communicating with. For this to work, the
user needs to identify himself while communicating with the server. The back-end
already offers a solution to this issue: JSON web tokens (JWT) [22].
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On a successful server login, the client receives a JWT which provides the ability
of authentication. The handling for this token has to be implemented on the client
side, including automatic refreshing after the token expires, without any requests
getting lost due to the expired token.

3.1.6 Offline-Usability

Users might want to download interventions and lessons they need to answer as
they might be cut from internet connection at some point. Additionally, users might
loose internet connection while trying to answer lessons. To prevent the loss of data
and to ensure that users can always answer their lessons, the application should
be able to run without internet connection.

To ensure that the user is able to work with the app as he intends, the relevant data
needs to be stored directly on the device. This implies that the application has to
synchronize the data between the back-end and the device self-sufficiently. This is
crucial in terms of data integrity 3.2.1.

Adding to that, it is desirable that the application minimizes the amount of data that
needs to be transferred between client and back-end. The client should only try to
load data from the back-end if the data is not up-to-date.

To be able to use the application as it is designed, users need to be logged in to
perform the desired actions. Hence, users should be able to log-in without having
internet connection. Without an active internet connection, the application cannot
communicate with the back-end, thus denying the ability to perform a back-end
login. Consequentially, the application needs to manage its own account system
which needs to be saved on the device to provide the ability to use all functionality
of the application offline. By logging in without internet connection, the back-end
will not be able to provide a valid JWT for the client. Hence, the application needs
to execute a login request automatically after retrieving internet connection.

12
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However, it is not advisable to store the login data of all users on every single device
using the application due to security reasons. Also, to be able to use the application
offline, the required data needs to be transferred to the device beforehand. Given
that saving the data for all existing users would take a significant amount of storage,
this is not an option. Therefore, only the data of the users that already logged into
the app should be stored on the device. Consequential, the user has to log in one
time with working internet connection to be able to use the offline feature of the
application.

Although providing the main functionality of the application in offline-mode, there
are functionalities the user will not be able to use in offline mode. These include
submitting the answers to the server to finish a lesson, updating the profile data
and password and synchronizing data with the server.

3.1.7 Displaying Interventions, Lessons And Answer-Sheets

To provide the user with enough information about the state of his therapy and to
improve usability (3.2.2), interventions and lessons need to be presented visually
to the user. This implies that the user has to be able to understand which lesson
belongs to which intervention and implies that he can access them easily. Access
in this case means that he can easily fill in the lessons and the visualization is
self-explanatory. This also implies that the user has access to all answers he has
already submitted. However, already submitted answers should not be changeable
after submitting the answers to the back-end.

13
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3.1.8 Filling in Lessons

To make the process of filling in lessons as easy as possible, a visualization of
the lesson-elements needs to be implemented. Each lesson consists of a specific
number of elements. These elements are grouped into blocks. Each block should
be displayed on one "page", meaning the questions will appear beneath each other
on the device’s display. The user should be able to switch between the pages as he
likes. The elements on each page usually build a structural unit. The separation of
the elements into pages is already done by the CMS (1.2) and does not need to be
addressed in the application. However, the application is responsible for displaying
them correctly.

The lesson elements used can be divided into two groups: basic elements and
questions elements. Basic elements do not ask the user for an answer but display
additional information for the lessons instead. Question elements expect the user
to put in an answer although answering question elements might be optional.

Basic Elements: Headlines, Texts And Media

At the current state, there are three types of basic elements.

1. Headlines
These are simple headlines for a page or a component, introducing the next
section of the lesson.

2. Texts
These elements are simple texts to explain questions or to provide additional
information to the user.

3. Media
Media elements provide additional information in form of media. At the current
state of system, there are three media-types:

Images
Images can be of the type png, jpg or gif and display a picture or an
image to the user.

14



3 Requirements

Video
Videos of short or long video records, supported with optional audio.
Allowed formats at the current state are .ogg and .webm.

Audio
Audio elements consist of an audio file. Supported formats are .ogg and
.webm.

Question-Elements

Besides basic elements, lessons consist of question elements. These elements ask
the user to answer a question given by the question element. At the current state,
there are seven types of these question elements, each of them asking a different
type of question or expecting a different type of answer.

1. Yes-No
This type of questions expect the user to answer the question with "yes" or
"no"

2. Multiple-Choice
This question-type offers a number of defined answer options and the user
has to pick one or more as his final answer.

3. Single-Choice
This type is similar to the multiple-choice, but only allowing exactly one an-
swer.

4. Slider
A slider gives a scale as possible answer. The scale has a defined minimum-
and maximum value. It also defines the possible answer steps between the
minimum and maximum value. The user answers this question by choosing a
possible value on the scale.

5. Short Text
This type of question expects a short text from the user as an answer.
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6. Long Text
Similar to the Short Text question-element, this question expects a text as an
answer. While the Short Text element only accepts a few words, the answer
to this question can be a lot longer. A popular use-case for this question-type
is asking the user for feedback.

7. Date
This question expects the user to answer with a date.

While some questions are obligatory, others may be optional. The visualization
should inform the user if the question’s answer is obligatory or optional. As soon as
the user tries to submit his answers to the back-end, the application needs to check
if all obligatory questions were answered. Furthermore, the application should only
allow answers that match the corresponding question.

3.1.9 Quick-Saving Answers

Users might not want to answer lessons in one session. Since the user should
not be forced to finish a lesson in one session, an ability to quick-save answers is
required. This includes that the user is able to save his current state of answering a
lesson to be able to continue the process at a later point. This implies that the user
can quick-save all lessons he has to fill in and not just one.

Since this is only a comfort feature and the back-end does not provide any kind of
functionality for this, quick-saved lessons will not synchronize between the different
devices. If the user quick-saves a lesson, he will only be able to load these answers
from the same device he has stored them on. All other devices will not save these
answers and thus will not be able to load them.

3.1.10 Reminder

Users might want to be reminded if they have not submitted answers for their
lessons yet. This version of the application aims on providing the ability of sim-
ple reminders for each lesson each week. These should tell the user which still
have to be answered and should also be displayed while the application is closed.
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Given that the browser module is limited in its functionality in comparison to mobile
devices, this feature will not be supported on the browser platform.

3.2 Non-Functional Requirements

Non-functional requirements define requirements in terms of quality the application
must meet. They allow the reviewer to judge a system in terms of quality, rather
than describing features and behaviours of the application.

3.2.1 Security

Security describes if the system is behaving error-free while under external attacks
or targeted disruption. Security can be divided into three different parts: confiden-
tiality, integrity and availability, each described more precisely below.

Confidentiality

Confidentiality defines the protection from unauthorized access to data.

Integrity

Integrity defines the circumstance that data cannot be altered or destroyed acciden-
tally or maliciously.

Availability

Availability defines the protection from data being made unavailable such as with-
holding data from users.

Considering that user data is stored in form of interventions, lessons, answers-
sheets etc, as the application should run offline, it is needed to provide data se-
curity for the data stored on the device, implying the meeting of the three defined
conditions.
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3.2.2 Usability

Usability defines the ease of use and learnability of a software product. Usability can
be interpreted as synonym for user-friendliness. One way of measuring usability is
the time a user needs to achieve his goals by using the software. This requires fast
understanding on how to use the system and how functionality can be accessed.
Usability also takes into account how easy the usage of the system can be learned.
It is desired that the application provides high usability through self-explanatory
graphical user interfaces without the need to explain the user how to use it. This
also includes the visualization of the application to be appealing to users.

3.2.3 Maintainability

Maintainability describes how easy the system can be maintained, meaning how
easy it is to correct defects, maximize the application’s lifetime, maximize efficiency
and security, meet new requirements, add new functionality or make future mainte-
nance easier.

3.2.4 Modularity

Modularity describes the separation of a system into different modules so they can
be easily exchanged, altered or removed. Higher modularity means more and better
encapsulated modules as this simplifies the actions described above.

Since this application will most likely be extended in the future, it is necessary that
the application can be maintained easily and has high modularity.
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To ensure that the defined requirements can be fulfilled, a concept for the applica-
tion structure is required. The choices made for this purpose are described below.

4.1 Choosing The Technology

The first decision to make was which technologies to use for the application, as
they define the workflow of the implementation and the structure of the application.
The fact that the application should be cross-platform for Android, iOS and browser
determines possible technologies. Hence, the first challenge was to find a software
framework for any programming language which is able to develop cross-platform
applications for all desired platforms. After searching for eligible frameworks on the
Web, the closer selection ended to be React-Native [6], Angular [14], Cordova [3]
and Ionic [4] with Ionic already being based on Cordova and supporting Angular.

Ionic uses Cordova’s functionalities and plug-ins by wrapping Cordova commands
and extents the possibilities by adding its own functionality. In addition to that,
Ionic supports the usage of the Angular Framework. Ionic thus offers the most
functionality out of those three by using both other frameworks, leading to the actual
competitors only being Ionic and React-Native.

In addition to Cordova’s functionality, Ionic supports the usage of Angular and, com-
ing with Angular, TypeScript. TypeScript is an addition to regular JavaScript and
compiles to JavaScript while adding more functionality. React-Native also supports
the usage of TypeScript, but does not support Angular. Ionic as well as React-
Native encourage developers to reuse already written code as a result of source
code working on all supported platforms. Using JavaScript and TypeScript makes it
is easy for the developers to share and use their implemented code.
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While both frameworks offer a good amount of possibilities and both seem to fit
fairly well for the Patient-Module, it was Ionic’s support of Angular what made the
decision. Since both frameworks are fitting for the project, I chose Ionic as a result
of my own preference. Angular itself is already a strong tool for cross-platform
development for mobile and desktop applications. Considering the ability to learn
both Ionic and Angular while using the Ionic Framework, I chose Ionic as technology
for implementing the application.

4.2 Ionic

Ionic Framework is an open source toolkit for building mobile and desktop appli-
cations. It uses web technologies for building its’ applications, these being mainly
HTML, CSS and JavaScript. In addition to JavaScript, Ionic also offers the usage of
TypeScript. Currently, Ionic has official integration with Angular [14].

The official Ionic website defines the goals of Ionic in the documentation [5] as
follows. For the sake of reporting, the quotations are shortened.

Cross-platform
"Build and deploy apps that work across multiple platforms, such as
native iOS, Android, desktop, and the web as a Progressive Web App
[...]."

Web Standards-based
"Ionic Framework is built on top of reliable, standardized web technolo-
gies: HTML, CSS, and JavaScript [...]. Because of this, Ionic compo-
nents have a stable API, and aren’t at the whim of a single platform
vendor."

Beautiful Design
"[...] Ionic Framework is designed to work and display beautifully out-of-
the-box across all platforms. Start with pre-designed components, ty-
pography, interactive paradigms, and a [visually appealing] base theme."
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Simplicity
"Ionic Framework is built with simplicity in mind, so that creating Ionic
apps is enjoyable, easy to learn, and accessible to just about anyone
with web development skills."

One very facilitating feature of Ionic is the given declaration of cross-platform HTML
elements. Ionic uses different styling for each platform and each provided HTML
element to create elements that fit into the styling of the platform. Thus, the devel-
oper does not have to create his own CSS styling for his elements but can use the
elements offered by ionic. As an example, Ionic’s input for dates will be compared
to the one provided by HTML in the following. They both expect the user to enter a
date. Both implementations do not use additional CSS styling.

Both elements use a so called "date picker" for the user input. This means that the
user can open an additional window where a calendar is opened and he can easily
pick the date he wants to enter. The HTML tag also offers the ability to enter the
date by typing it while simultaneously making sure the user can only enter numbers
in the correct format. Ionics element does not offer this since it is usually more
comfortable to input the date with the usage of the date-picker, especially on mobile
devices.

Figure 4.1: Ionic’s HTML tags for date-time input

1 <ion -item >

2 <ion -label >When were you born?</ion -label >

3 <ion -datetime ></ion -datetime >

4 </ion -item >

The implementation of a simple Ionic date input is presented in Figure 4.1. For the
input to work as intended, Ionic suggests the wrapping of the element with an ion-
item tag to build a structural unit and a label to inform the user about the data he
should put in. This label will be shown to the user as part of the date input.

The result is shown in figure 4.2.
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Figure 4.2: Ionic date input

By clicking on the input field, the screen will turn a bit darker, external actions will
be disabled and the date picker will be shown. The user can now put in the desired
value by choosing the corresponding day, month and year, presented by the date
picker. As soon one of the buttons "done" or "cancel" is hit, the chosen value will
be saved or dismissed and the date picker will disappear again. The same func-
tionality as offered by the "cancel" button can be achieved by clicking on the screen
above the date picker. Ionic also styles the input to match the current platform. For
example, on the browser this input looks basically the same.

As Ionic also styles the HTML date input on mobile devices although not being
an Ionic self-defined element, the HTML element presented below will be from the
browser platform. HTML does not expect the date input to be grouped with a label
into an item. However, the affiliation of the label to the input has to be defined by
using and id for the input and setting the affiliation of the label to mentioned id. The
corresponding source code is shown in Figure 4.3.
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Figure 4.3: HTML tags for date-time input

1 <label for="birthday">When were you born?</label >

2 <input type="date" id="birthday">

This HTML code results in the view as shown in Figure 4.4.

Figure 4.4: HTML date input

In contrast to the simple HTML element, Ionic’s element is already styled with CSS
without the need for the developer to add any CSS classes or additional styles,
whereas the HTML element looks pretty simplistic and is not responsive, Ionic’s
element fulfils these tasks without any further addition to the element. The look is
much more user-friendly and more appealing and is responsive to the screen size.

Ionic also offers a very modular and easy understandable application structure,
making it easy to implement, alter, switch out or delete small parts of the applica-
tion. Furthermore, Ionic provides a large scale of usable plug-ins, including most of
Cordova’s available plug-ins.

The usage of Angular additionally extends the possibilities of Ionic through finished
and usable Angular modules such as the HttpClient. However, this work does not
want to give a presentation for the Ionic framework as a whole. Other features can
be explored in Ionic’s documentation which can be found in [4].
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4.3 Structure

As described before, Ionic provides a modular and easy understandable architec-
ture for its applications. For developing, Ionic differentiates different modules such
as Components, Providers and Interfaces. However, not all modules will be pre-
sented in this thesis.

Figure 4.5: Software Architecture
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The basic architecture of the software is shown in Figure 4.5. It mainly consists
of three different module types: The Pages, the Components and the Providers.
Pages present the Graphical User Interface (GUI) to the user and provide the ability
to show information and access the application’s functionality. Components basi-
cally fulfil the same purpose, although they do only implement smaller GUI elements
with a given functionality which can then be used by the Pages. Providers are used
to provide all functionality for the application that is not linked to a user interface,
such as handling server requests or handling the local storage. These modules are
not accessed by the user directly but are called by the Pages and Components. The
pages used for this application are described in Section 5.2. Each module will be
defined more precisely down below.

4.3.1 Components

Components provide a possibility to create GUI elements and bind them to a con-
troller which handles the functionality behind them. Therefore, components usually
consist of three files. One HTML file, one SCSS file and one TypeScript file.

The HTML defines the elements of the component’s GUI. Everything the user can
see and interact with on a components GUI is defined in this file. There is already a
good amount of explanations and tutorials on how to build GUIs with HTML on the
web so this work will not cover this topic in depth. In addition to plain HTML, Ionic
offers a variety of different additional HTML elements defined by Ionic as already
mentioned in Section 4.2.

The SCSS file is responsible for styling the GUI by making the HTML structure
defined in the HTML file visually more appealing. It is used to style the elements
given through the HTML definitions. SCSS uses a more simplified and developer-
friendly syntax for CSS code. HTML and SCSS together allow the developer to build
a GUI and apply visual designs to it, thus providing the ability to create appealing
interfaces for the interaction of human and application. Again, this work will not
cover CSS and SCSS in depth.
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The TypeScript file embodies the controller for the GUI. Its function is to handle all
functionalities the component should provide which is accessed by the user through
the GUI. These might include opening new pages, loading data from storage or
storing data into the storage. In addition to the human-application interaction, the
controller handles all background functionality of the application the user cannot
see by using providers (4.3.3).

To extend the modularity of the application, following components were defined.
This short overview only covers the most important ones.

• Language-Setter
This component is responsible for the translation of all needed text output
provided by the GUI. It does not provide own GUI elements but only offers the
ability of translation. This implies that it is not visible for the user.

• Nav-Bar
The function of this component is to provide a possibility for the user to nav-
igate through the app by changing pages. It contains the Navigation Menu,
which will be introduced in Section 5.2.2, and a logout ability.

• Intervention
This components contains the data of an intervention as provided by the back-
end and is able to display this data with the help of GUI.

• Lesson
These components basically have the same task as Intervention components,
though they contain lesson data instead of intervention data.

• Lesson Elements
Each lesson element has its own component, consisting of GUI elements
styled with SCSS and a controller. However, not all components for these les-
son elements will be described in detail as they only differ in the provided GUI
elements and the data they contain. The functionality for these elements is
generally the same. They provide the ability to display the element’s informa-
tion, such as the included question or answer options, and answer question
elements.
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These components are used by the pages to enable the user’s access to their func-
tionality. Some of them use providers to implement additional functionality. For
example, all pages use the Language-Setter component to enable translation for
the pages.

4.3.2 Pages

Pages define the actual ’pages’ in terms of the GUI between which the user can
switch inside the application. They can be compared to different web-pages on a
website. The application defines a root-page which will be the page displayed to the
user when he starts the application. Usually, other pages can be accessed through
a navigation, this being either a group of links or buttons the user can click on,
different tabs or any other kind of structure that allows the user to access different
pages or any other kind of functionality. In Ionic’s context, each page acts as an
entire view.

Angular itself does not have pages. It uses its components as pages. In contrast to
Angular, Ionic differentiates between pages and components. The structure of both
is very similar though with pages defining a special kind of component. As every
component, pages consist of a HTML, a SCSS and a TypeScript file while each file
describes the same functionality as already described in Section 4.3.1.

Ionic interprets each page as a stand-alone view, meaning that each page is one
complete GUI. This does not mean that all HTML and CSS code has to be defined
in the page’s HTML and CSS files though. Pages can use components to provide
additional GUI and corresponding controlling inside the page as shown in Figure
4.5.

4.3.3 Providers

Providers are Angular’s attempt on providing any kind of service. They are used to
provide basic functionality that is not bound to pages or components. They are used
to group functionality by the type of functionality they provide. Therefore, common
usages of providers are handling server requests or local data administration.
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In Ionic, these providers consist of only one TypeScript file where the functionality
of the provider is implemented. The providers can be used by pages (see Section
4.3.2), components (see Section 4.3.1) or other providers to access their function-
ality.

To provide an example, the most important providers used by the application are
listed below.

• ServerRequestProvider
This Provider is responsible for any kind of client-back-end communication.
It defines a collection of methods sending requests to the back-end, using
Angular’s HttpClient module. The methods then return the response of the
back-end. This provider is mainly used by other providers needing back-end
communication, such as the SInterventionHandlerProvider or the LessonHan-
dlerProvider.

• LocalStorageProvider
For the administration of the local storage, the LocalStorageProvider is used.
This module offers methods for storing, reading and deleting any kind of data
for the local storage.

• InterventionHandlerProvider
The InterventionHandlerProvider contains all functionality concerning the ad-
ministration of interventions. It uses the ServerRequestProvider to exchange
intervention data with the back-end and uses the LocalStorageProvider to ad-
ministrate the local saving of interventions.

• LessonHandlerProider
This Provider basically implements the same functionality as the Intervention-
HandlerProvider, but covering the functionlities needed for lessons.

• RequestMiddlewareProvider
This Provider used indirectly by any Page, Component or Provider sending
requests to the back-end. Indirectly means that this provider is not called
by other modules but implements Angular’s HttpInterceptor module to adjust
all requests the application sends to back-end. It is mainly used for token
refreshing (3.1.5).
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4.4 Local Storage

Ionic offers the usage of SQLite as a local database. Since the application must run
on the browser platform which is no able to use SQLite due to its limitations, SQLite
was not used for this application. However, Ionic provides another possibility to
store data locally. The so called "local storage" can save key-value pairs inside the
storage of the application.

However, the local storage only has the ability to save data as text. Given that all
user data including interventions and lesson should be saved on the device, it is
necessary to translate data objects as used by the applications to text and vice
versa. This feature is already provided by the Java Script Object Notation (JSON)
which is also included in Ionic. Combining JSON and Ionic’s local storage, the
ability to save and load data to the devices storage is provided even on the browser
platform.

However, Ionic’s local storage is only acceptable as storage for data that is not
security sensitive due to its very poor security standards. Thus, either a different
storage or an encryption tool has to be used to ensure data security and integrity.

Finally, a different storage was chosen for security-sensitive data and Ionic’s local
storage was chosen for not security sensitive data. The storage chosen for security-
sensitive data is a plug-in for Ionic named "Secure Storage" and will be covered in
Section (5.4.1).
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After collecting requirements and constructing a design, the actual implementation
for the application was done. This chapter addresses the implementation process
and its results. This includes an introduction to the visualization, the approach of
the implementation, a description of the challenges faced while implementing as
well as a small introduction to used plug-ins.

5.1 Approach

To ensure that the application will work as intended and all requirements are met,
the process of implementation needs to be planned beforehand. For this purpose,
different methods were used. The most important ones are described in this sec-
tion.

5.1.1 Defining Requirements

Before being able to start the implementation it is needed to define the require-
ments for the application as already described in Chapter 3. Considering this cir-
cumstance, the first action was to collect all requirements for the application. The
process for this first step is described more precisely in the referenced chapter.
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5.1.2 Issue Tracking

Issue tracking is a common way of keeping the outline the features already imple-
mented and those which still have to be done. An issue tracker provides a detailed
overview over all tasks that have to be worked on. To work as intended, these tasks
should be as detailed and small as possible and should be completable in a prefer-
ably short amount of time. These so called issues are not all defined at the start of a
project but can be added throughout the whole software-engineering process. They
include bugs found while testing the application and additional work that occurs at
a later point.

While implementing the required features of a software system, it is most likely that
developers cannot remember all required work without taking notes. This defines
the main reason for issue tracking. Furthermore, other team members can keep
track of what work still needs to be done. Existing tools that support issue tracking
are Pivotal Tracker or GitLab’s issue feature. These tools are mostly used by teams
that develop software projects together to keep track of the work done by others
and what is not yet finished.

Although not that formal, this concept was used for the implementation process
of this application. Starting with the project, all basic requirements were noted in
form of issues into the provided GitLab repository for the source code. As the
implementation continued, issue tracking tool was switched out as a result of the
group size being only one person.

Given that the amount of time needed to write down the issues as formal as GitHub
intends is high compared to a local text-log, GitLab’s issue tracker was switched out
by a simple text log. Thus, the issue tracking continued in form of a text file where
all issues were logged in form of a small explanations.
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5.1.3 Weekly Goals - Personalized SCRUM

To provide a structured implementation process the concept of SCRUM was cho-
sen. SCRUM is an agile method of software developing, meaning that the process
of implementation and the implementation itself is not planned completely from the
start but is planned for each part separately and right before this part is imple-
mented. This offers high flexibility throughout the whole implementation and the
possibility to adapt to problems or changes from the outside.

The basic operating principle is as follows. The implementation is divided into a
number of so called sprints which are defined by a period of time. The lengths of
these sprints are usually the same. Before starting a sprint, the developer team
plans what will be done during the sprint. This is usually defined through issues
as mentioned in Section 5.1.2. These tasks, or issues if issue tracking is used,
are distributed to the team members while taking in count what each member can
possibly achieve during this time. At the end of the sprint, the team compares the
outcome with what was planned and, if necessary, writes new issues. Afterwards,
the next sprint is planned and the issues to be fulfilled are distributed again.

As a reason of the group size being only one person, this principle was personalized
to fit for this developing process. While the basic idea remained the same, the
sprint length was not the same for all sprints due to personal reasons. Also, no
sprint meetings were held since there was simply nobody to talk to and issues did
not have to be distributed. Considering that the developer team consists of only
one person, the usual distribution of SCRUM roles such as SCRUM master was
redundant.

To provide an overview over the process the implementation went through, the fol-
lowing will describe the single topics implemented. Considering that each topic
might be too much work for one week, these topics were internally partitioned into
issues (5.1.2) with each sprint covering a specific amount of these issues.
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1. Login
Considering that most functionality of the application needs user authoriza-
tion, the first part to implement was a functional login. Without this being
implemented it is hard to test implemented functionality which needs autho-
rization. This topic included the issue of setting up functional requests to the
back-end.

2. Intervention Overview
After a successful login, the user should be able to access his data, this being
participating interventions, lessons and other. To actually be able to use the
application’s functionality, it is essential to be able to access this data with the
help of graphical user interfaces, leading to the Intervention Overview being
the second part to implement, including loading needed data from the server.

3. Token-Refreshing
As the login already implied the basic usage of the provided JWTs from the
server, this feature had to be extended to provide the ability to refresh expired
tokens automatically. Since this is a feature used by the whole application, it
was helpful to implement this feature as early as possible.

4. Lesson Overview
After being able to handle JWTs and load data from the server, the goal was
to be able to actually view lesson content in form of questionnaires. For this
to work, lessons containing their elements had to be loaded from the server
to provide a GUI for the user to be able to start the mentioned questionnaires.

5. Multilingualism
Taking into account that all texts used inside the GUI should most likely be
translated, it was important to implement multilingualism as early as possible
to prevent the need to switch out all texts with the translation functionality.
This might result in great effort if much text has to be switched out.

6. Viewing Lesson Elements
As answering lessons is the central functionality of this application, the lesson
elements needed to be presented visually to the user. Considering that the
amount of different possible elements is relatively high and a GUI element for
each lesson element had to be created, this was possibly the part which took
the most time to implement, thus being split to more than one or two sprints.
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7. Answering Lessons
The next topic to be implemented after being able to view lessons with their
elements was actually answering the presented lessons. Before submitting
answers to the back-end, the quick save functionality was implemented in
terms of more possibilities in testing the implemented features.

8. Local Storage
Given the basic features of the application being implemented, the next step
was to provide the ability to use the implemented functionalities while the
application was cut from internet connection. This implied saving the already
loaded data as well as preparing the application’s local storage for future ex-
tensions in terms of functionality.

9. Offline-Usability
As the data could now be saved locally inside the local storage, is was de-
sired to make the application actually usable if internet connection was cut.
To achieve this functionality, the application has to detect if a connection is
present and use the local storage instead of trying to load data from the server
if not. This also implied the implementation of a local account system so the
user can login without the application’s need to communicate with the back-
end since local saving of the data is irrelevant if the user cannot login if offline.

10. Personal Data
After finishing the central functionality of offline usability and answering lessons,
the next step was to realize the handling of personal information. Considering
that future plans for this application include some kind of social network, it is
desired to be able to set personal information such as name and sex to be
able to identify other users if wanted.

11. Registration
Since this functionality had no high priority, it was implemented relatively late
in the implementation process.

12. Lesson Media Elements
These lesson elements were not implemented from the start as it took a great
amount of effort find a solution for saving these elements locally. Hence, they
were pushed to the end of the implementation.
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13. Notifications
For the priority for this feature not being high and just as media elements
taking great effort, this topic was the last to be implemented.

5.1.4 Code Refactoring

As a result of not having worked with either TypeScript, Angular or Ionic before, the
knowledge about the given technology increased with adding new functionalities
and working on issues. Although having already done research, tutorials and small
test implementations as exercise beforehand, it is undeniable that the knowledge of
the used technology was low compared to experienced Ionic, Angular or TypeScript
developers.

Hence, the understanding of the technology increased as the implementation of
the application progressed. Given a higher understanding, already implemented
source code appeared ineloquent and sometimes obsolete. Considering that refac-
toring usually results in more effective and more efficient source code, this process
usually was executed in form of adding new issues when new discoveries concern-
ing the technology were made or when the understanding increased as a result of
mastering challenges or facing problems.

The process of refactoring covered as much parts of the application as possible to
keep a structured and consistent code.
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5.2 User Interface And Navigation

The finished application can be divided into the different pages and views the user
will be able to access. This section provides a small introduction to the visual ap-
pearance of the pages and how to use their functionality.

5.2.1 Login / Registration

Figure 5.1: Login Page

The initial page displayed to the user on application start-up is the login page shown
in figure 5.1. Before being able to use the elementary features of the application,
the user needs to log in. For this process, the user’s email address is needed to
identify the user and a password has to be entered to prove the user’s authorization.
For this process the user needs to fill in the two text inputs labelled with email and
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password. To conclude the login process, the user needs to hit the "Login" button
below the input fields.

Finishing this process by having entered correct login data and pressing the "Login"
button will lead the user to the "Home Page" described in Section 5.2.3. If the
user enters incorrect data, an error window will pop up and inform the user about
the failed login. Assuming that the user does not have an account yet and wants to
create one, the button "Go to registration" underneath the Login title can be pressed.
This will result in the view changing to the registration page as shown in Figure 5.2.

Figure 5.2: Registration Page

Instead of providing the ability to log into an account, this view’s functionality is
the creation of accounts. For creating an account, the user needs to fill in four
inputs: his email address as an identifier for the user, a password to be used as
authorization security, a repetition of his password to ensure that the user enters
the password correctly and an account name. Both the email as well as the account
name are globally unique. Consequentially, the registration process would fail if a
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different user already created an account with the entered email or account name,
resulting in an error window pop-up to inform the user. Additionally, the inputs
must meet different specifications to be accepted. These include that the entered
email has the format of a legit email address, both entered passwords have to be
identical and the password length is at least 8 characters. Not meeting any of those
requirements will result in an error window and the need to repeat the registration
process.

After a successful registration, an email will be sent to the user containing a link
which will activate the user’s account. The user cannot log into his account until this
confirmation link is clicked and thus the account was activated.

For data integrity reasons, the registration will only work if the user has active inter-
net connection.
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5.2.2 Navigation Menu

The navigation menu is placed on the top left corner of the app, the visual ap-
pearance is shown in Figure 5.3 and can be found on the Home Page (5.2.3), the
Intervention Overview Page (5.2.4) and the Settings Page (5.2.7). It is accessed
through a button which will open the menu.

Figure 5.3: Navigation Menu

The menu can be used to navigate through the application, meaning that the user
can control which page will be displayed. The navigation menu currently contains
three different pages: the Home Page (5.2.3), the Intervention Overview (5.2.4) and
the Settings Page (5.2.7). Other pages might be added with application extensions.
All of these pages have access to the navigation menu as well as providing the
ability to log out of the application. For this purpose, a logout button is located in
the top right corner of the application.
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5.2.3 Home Page

The Home Page is the starting view the user will see after a successful login (5.4).

Figure 5.4: Home Page

The page provides an overview of interventions and lessons the user is participating
in. On the home page, these are filtered and only those which are currently active
are shown to the user. Active in this case means that the user has not finished
them yet and the current day and time fits the time period they can be answered in.
For each intervention, a list of unfinished lessons is displayed. The answer process
of these lessons can be started by clicking on the "Fill out" button offered by each
lesson.
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5.2.4 Intervention Overview

The structure of this page is very similar to the structure of the Home Page (5.2.3).
The central functionality of this page is to show the user the interventions and the
lessons he is participating in as shown in Figure 5.5. The difference being that the
home page filters all interventions and lessons as described in 5.2.3.

Figure 5.5: Intervention Overview Page

The intervention overview will not filter interventions and lessons but will mark them
with a corresponding color representing their current status. Currently, the applica-
tion will mark the finished ones grey while active ones are marked black. This might
get extended with more features added in the future. Each lesson of an interven-
tion provides two possible user actions. The first one being the possibility to start
answering the lesson. This will lead to the start of the process described in 5.2.5.
The second action is accessed through the button "Answersheets". This action will
lead the user to the answer-sheet overview (5.2.6) for the corresponding lesson.
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5.2.5 Filling In Lessons

Figure 5.6: Filling in lessons

As soon as the user starts the process of filling in a lesson, he will be shown an
overview of the lesson he is going to fill in. This usually includes a title and a de-
scription and sometimes some additional information about the lesson. This data is
provided by the back-end and is not part of this application. This overview includes
a button which will actually start the lesson by showing the lesson page presented
in Figure 5.6.

This page will show the elements defined for the lesson (see 3.1.8) grouped by
pages and in the correct order. A page in this case is a structural unit which starts
at the top of the display and ends at its bottom. If a page contains more elements
than the display can show, the user can scroll down to see the missing elements.

If the device stores quick-saved answers (see 3.1.9), these will be loaded for the
corresponding elements.
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Pages can be swapped by either swiping to the right or left or with the "previous
page" and "next page" buttons at the end of each page. If the user reaches the end
of the lesson, the "next page" button will be replaced by a "finish lesson" button.
If this button is clicked, the application will check if all requirements for the lesson
are met. If this is the case, the application tries to submit the answers to the back-
end. Considering that the request is successful, a new answer-sheet will be created
locally and the intervention overview page will be shown to the user. If not, an error
window will pop up and inform the user about the unsuccessful finish. Since this
action needs the application to communicate with the back-end, an active internet
connection is required.

5.2.6 Answer-Sheet Overview

Figure 5.7: Answersheet Overview
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The purpose of this page is to show the user all answers for a given lesson he
has already submitted. Whenever the user finishes a lesson and thus his answers
have been submitted to the back-end, an answer-sheet is created both on the back-
end and on the device. These answer-sheets will be shown on the answer-sheet
overview page with the date and time the answer-sheet was submitted at as shown
in Figure 5.7. This page exists for each lesson the user is participating and shows
all created answer-sheets for this lesson.

The user has the ability to open these sheets. This results in the user getting
displayed the same view used for filling in lessons (5.6). However, using this feature,
the user will not be able to change any answers of any element since the purpose
of this feature is to only show the user which answers were submitted.

5.2.7 Settings

Figure 5.8: Settings Page
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This page allows the user to check and to change his personal information. This
includes his first name, last name, his account name and his sex. The user can
easily change this data by changing the entries in the input fields and hitting the
save button after. The Settings Page is shown in Figure 5.8.

This page also handles the user’s preferred language. This is done by changing the
entries of the application language field and the lesson language field. The first is
responsible for the language the application runs in. Changing this entry will result
in changes for all buttons, headlines and labels the application uses. Changing the
second entry will lead to the the data of interventions and lessons received from the
back-end being in the chosen language.

Additionally, the user can change his password used for his account on this page.
For this purpose, three input fields are provided. The first one checks the user’s
current password so the changes can only be made if the user is able to authorize
himself. The other two expect the new password while both inputs follow the same
rules as on the registration page (5.2.1). If all is entered correctly, the password will
be changed on the back-end and on the local device.

Changing any of the data except the language requires an active internet connec-
tion.

5.3 Challenges And Problems

In the process of implementation it is usual that problems appear and challenges
have to be faced. This Section covers the problems and challenges that appeared
while implementing this application.

5.3.1 Defining Modules For The Application

The very first challenge faced was the actual navigation of Ionic. Ionic’s navigation
is conceived like stacks known from computer science. A stack stores values by
putting them on top of each other and taking them off again. Storing a value will
result in another stack element being placed on top of the stack ("push" operation)
and reading a value will remove the top element of the stack ("pop" operation).
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Figure 5.9: Source Code for navigation in Ionic

1 export class HomePage {

2 constructor(private navCtrl: NavController) {}

3

4 public pushSettingsPage () {

5 this.navCtrl.push(SettingsPage );

6 }

7

8 public setRootSettingsPage () {

9 this.navCtrl.setRoot(SettingsPage );

10 }

11 }

Ionic’s stack navigation works accordingly. It defines a root-element for the stack
on which different pages (see 4.3.2) will be pushed and popped. The display will
always show the top page element of the stack. Each pushed page will receive a
button in the top left corner with an arrow icon that, if pressed, pops the current page
from the stack and the page below will be shown again. Additionally to pushing and
popping, Ionic’s navigation offers the ability to set new roots. This will empty the
current stack and set the new page as root-page for the stack. Thus, navigation is
achieved through the orders in the source code below 5.9.

However, working with tutorials from the start, the navigation given through these
tutorials followed a slightly different pattern. Instead of calling page modules directly,
quotations were used. Instead of push(SettingsPage), push("SettingsPage") was
used. This is a commonly used way of routing, but requires the page-to-push to
be defined as lazy-loading page. Since lazy loading was not used for these pages,
this led to an error which was thrown when trying to access a page with the push
operation in specific cases. This was an error occurring at the very beginning of
the implementation process, for what reason the knowledge about Ionic was limited
and checking internet forums for the solution to this error seemed like the most
reasonable option.
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The solution found on the internet to this exception thrown by the compiler as con-
sequence of this issue was defining the page module the navigation should push
to differently in the applications module file. Although solving the navigation issue,
the provided solution was not acceptable as it resulted in not being able to use
self-defined components on this page anymore. After taking a good amount of time
finding the actual issue, it was solved by simply not using the quotations. This is
not the type of issue one would expect to occur, regardless taking a lot of time to be
fixed.

5.3.2 Back-end Requests

Due to the application’s need to exchange data with the back-end, it is needed to
implement some possibility for the application to communicate over the internet.
The back-end already offers a a way for this purpose. It is designed to respond to
incoming HTTP requests if the user sending the request is authorized. Thus, the
application needs to implement this form of communication.

Angular’s HttpClient does exactly that. The module can send different types of re-
quests to a given URL and receive the response. For transmitting data, it uses
JSON as data structure. Data retrieved from the HTTP response will also be trans-
mitted as JSON if present.

Taking into account that calling HTTP requests is an essential part of functionality
of the application, a small code example for a simple HTTP post request is provided
in Figure 5.10.
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Figure 5.10: Example Request for back-end communication

1 export class RequestProvider {

2 constructor(private http: HttpClient)

3

4 public submitData(data , url) {

5 this.http.post(url , JSON.stringify(data),

6 {observe: 'response '}). then(( response) =>

7 if (response instanceof HttpResponse) {

8 localStorage.set("data",

9 JSON.stringify(response.body);

10 }

11 )};

12 doSomething ();

13 }

14 }

The provided example will send a post request to a given URL while adding given
data to the requests body. Angular’s HttpClient uses asynchronous requests, recog-
nizable by the ’then’ keyword. This implies that the application will call the request
with the this.http.post method and will immediately execute code below the re-
quest call, in this case the doSomething method. All code declared inside the
’then’ keyword will be executed as soon as the response is received, the response
included in the ’response’ wildcard. In this example, the received data will be stored
inside the local storage. The option "observe: ’response’" will lead to the HttpClient
providing additional information about the response from the called server such as
the type of response. Since requests usually take some time to receive an answer,
doSomething will be executed before the code inside the ’then’ expression.

Since the local storage 4.4 and the secure storage 5.4.1 both use simple text stored
values, the transmitted JSON data can easily be translated to a simple text and
stored inside the storage.

5.3.3 Authorization And Authentication - JSON Web Tokens

The handling of JWTs is needed for authentication since the back-end already offers
this as solution for authorization. The following will describe the way these token
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are used and handled for this purpose.

After a successful login of the user at the back-end, the back-end creates a JWT and
attaches it to the client’s response. The client can now use this JWT to authenticate
himself when sending another request to the back-end by attaching the JWT to the
request. The back-end itself can determine which user is sending the request by
reading the JWT. To use the authentication method offered by the back-end the cor-
responding token handling on client side has to be implemented. The JWT needs
to be saved on the client and attached to each request which requires user authen-
tication. Except for login and registration, all requests need user authentication.
Additional, the JWT expires after some time as a result of security guidelines. After
the JWT expires, all requests sent to the back-end with the expired token will be
responded with an HTTP-Error-Response by the back-end. Logging the user out of
the application at this point is no reasonable option as this might lead to a loss of
unsaved data for the user. To address this issue, the application needs to detect the
expiration of the JWT and update it if necessary. The functionality of refreshing the
JWT is already implemented on the back-end. Sending the corresponding request
allows the client to refresh the JWT if the expired JWT is attached to the mentioned
request without the need to perform another login.

To implement this functionality, a middleware was implemented using Angular’s
HTTP interceptor. This tool allows to intercept any request sent from the applica-
tion. Thus giving the ability to detect expired tokens and refresh them if necessary.
This is implemented as follows: Before actually calling the request, the intercep-
tor checks if a token refresh is currently in progress which is recorded in form of
a boolean. If so, the request simply gets queued. If not, the interceptor adds the
current JWT to the request and sends it to the back-end. After this, the intercep-
tor observes the back-end’s response. If the token is expired, the back-end will
respond with a 403 HTTP-Error-Response containing the message "Token has ex-
pired.". The interceptor catches this error and immediately sets the current refresh
boolean to true so following requests will be queued. Continuing, the application
sends the refresh request with the current, expired token.

As soon as the response containing the new, valid token is received, the token is
saved on the client, the refresh boolean is set back to false so following requests are
not queued any more and queued requests are notified. This results in the queued
requests being adapted to the new token and then being sent.
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5.3.4 Local Saving Of Data

Defined by requirements, the application should be able to use a storage for account
information and user depending data. The challenge is to find a way to store data
on each platform. As a result of having already worked with databases, the first
idea for the storage was the usage of a database, such as MySQL, SQLite or any
other possible database. Although SQLite is supported by Ionic, it does not work
on the browser platform due to the platform’s limitations.

Searching for alternatives working on the browser, Ionic’s local storage was de-
tected. This storage works on devices as well as on the browser. However, it is very
insecure in terms of data security. It is not hidden and does not encrypt the data
stored. To face this problem, Ionic also provides an alternative storage from the
Cordova framework, the Secure Storage (see 5.4.1). This storage is designed for
saving sensitive data. Although this plug-in works on device as well as on browser,
the browser platform is actually not supported. Hence, the values stored are only
stored in the local storage on the browser platform, making the secure storage with-
out additions no good choice either. Thus, it is essential to encrypt data stored to
both local storage and secure storage as a result of both storages being insecure
on the browser platform. For this to work, an encryption service was needed. For
this purpose, the library CryptoJS (5.4.4) was used which provides the ability to
encrypt and decrypt data with AES.

The encryption offered by the library is accessed as shown in Figure 5.11.
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Figure 5.11: Example for encryption and decryption with CryptoJS

1 import CryptoJS from 'crypto -js';

2

3 export class CryptProvider {

4

5 constructor(private storage: SecureStorage) {}

6

7 public static encrypt(data , key) {

8 return CryptoJS.AES.encrypt(JSON.stringify(data),

9 key). toString ();

10 }

11

12 public static decrypt(data , key) {

13 let bytes = CryptoJS.AES.decrypt(data , key);

14 return JSON.parse(bytes.toString(CryptoJS.enc.Utf8 ));

15 }

16 }

The secure storage with additional encryption can be accessed as shown in the
code example in Figure 5.12.
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Figure 5.12: Accessing the Local Storage with encryption

1 export class StorageProvider {

2

3 constructor(private storage: SecureStorage) {}

4

5 public storeValue(key:string , value:string) {

6 this.storage.create('storage ').then(

7 (secureStorage: SecureStorageObject) => {

8 let cipheredValue = CryptProvider.encrypt(value);

9 secureStorage.set(key , cipheredValue );

10 });

11 }

12

13 async getValue(key: string) {

14 let data: string;

15 await this.storage.create('storage ').then(

16 async (secureStorage: SecureStorageObject) => {

17 let cipheredData = await secureStorage.get(key);

18 await data = CryptProvider.decrypt(cipheredData );

19 });

20 return data;

21 }

22 }

Considering that the secure storage is used asynchronous, the application has to
wait until data is retrieved before returning. This is achieved by marking the get-
Value method and the created storage as async and then using the await com-
mand.

The biggest disadvantage coming with the use of secure storage and local storage
is the limited amount of possibilities offered by key-value storages. But taking the
limited possibilities offered for the browser module into account, this kind of storage
seemed like the most useful tool.
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5.3.5 Synchronising Local Data With Server

As already explained in 3.1.6, it is necessary to store most of the user’s data in-
side the application for offline usability. Since this opposes the data to possible
data inconsistencies, it is necessary to synchronize the user’s data between the
application and the back-end.

At the current state, crucial actions are disabled in offline mode for this purpose.
These actions being finishing lessons, changing personal information including pass-
word and registration. After a successful login, the application will synchronize all
user data including interventions, lessons, question elements and answer-sheets
for each lesson of the user. Additionally, the application will synchronize a specific
resource if the user tries to access it.

To prevent the application from loading all data again if it is unchanged on the back-
end, the usage of conditional requests in form of HTTP e-tags was introduced. For
further information, see the RFC documentation provided in [24]. These requests
allow the application to check if data was changed instead of directly requesting the
resource. The back-end saves an e-tag for each of its resources which is changed
each time the resource itself is changed. After a successful get-request by the
client to a resource, the back-end will add the resource’s e-tag to the response.
The client can now save it himself inside the application and add the e-tag and a
HTTP if-modified header to the next get-request for this resource. This will result
in the back-end comparing his own saved e-tag and the one he received from the
client. If they match, the back-end will only respond with an HTTP 304 not modified
response instead of sending the resource. The client will now know that nothing
has changed and his locally saved data is up-to-date without the need to transmit
the whole resource. If data was changed, the back-end will simply respond with a
200 HTTP Response and transmit the resource.
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5.3.6 Auto-Login After Offline Login

Given that the user should be able to use the application offline, a local account
system was needed as described in 3.1.6. For this to work, the user must have
the ability to log into his account while no internet connection is active. Taking
into account that the application will always try to communicate with the back-end
if possible and that the user will not have a valid token due to the offline login, the
application will try to send requests with no token provided if the internet connection
is retrieved after the offline login.

This will result in all requests being answered with a 403 HTTP-Error-Response
since authorization is needed and no token is present and would lead to a state of
incapacity to do anything for the user. To encounter this problem, the application
saves the users password encrypted inside the secure storage until the first request
with internet connection is handled. For this purpose, Angular’s HTTP interceptor
is used again. The interceptor will detect when no token is present and internet
connection is active. If this is the case and a password was stored by the offline
login, the application will queue the request, decrypt the password and send a login
request to the server with this data. As soon as the password is read from the
secure storage, it is immediately deleted.

This request will retrieve a valid token from the back-end and will use this as autho-
rization for future requests.

5.3.7 Injections

For the purpose of higher modularity and performance, Angular and thus Ionic uses
a coding pattern called Dependency Injection (DI). These dependencies are exter-
nal functionality a class needs to provide its own functionality. Dependencies in
Angular are usually injected when the class which uses them is instantiated. For
further explanations, see the documentation provided in [2].

Although this pattern has its advantages, there is one big disadvantage that has to
be considered. By using DIs, the developer has to be cautious of not generating
circular dependencies, meaning two classes cannot depend on each other.
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As a result to this property, the developer has to build each different component,
page or provider (see 4.3) carefully to not create a circular dependency. This is no
problematic issue but has to be taken in account while constructing an application
with Angular and thus with Ionic.

5.3.8 Ionic Local Notifications

To set weekly reminders for each unfinished lesson of a user, Ionic’s Local Notifica-
tion plug-in was used. This enables the creation of timed notifications while the app
is either opened or closed. For this purpose, the plug-in uses a defined Provider
(4.3.3) which creates and shows these notifications at a given time.

The challenge while working with this plug-in was the correct definition of the no-
tifications, which should be created. The plug-in offers a great amount of possible
options, but some of them did not seem to work as intended. This might be a result
of the plug-in being defined for Cordova and not specifically for Ionic. Ionic wraps
this plug-in for its own usage. Hence, the given documentation did not fully cover
the usage of the plug-in. Some documented functionalities did simply not work as
indented. This led to the need for a trial and error process to get the plug-in to
create the notifications as intended.

5.3.9 Offline Availability Of Media Components Of Lessons

Local saving is mainly solved by using JSON and the secure storage for this appli-
cation. Although this does work well for all user data including personal information,
interventions, lesson etc, this is no solution for media elements, as this type of data
cannot be parsed into a string without further addition. Furthermore, the media el-
ements have to be saved on the local device as files to be able to display them on
the GUI, which is achieved by binding these files to HTML tags.

For the media components to be available in offline mode, the application needs to
be able to download a media file from a given URL provided by the lesson, save it
on the device as file and then bind this file to the corresponding HTML tag. The first
challenge faced was to download the file accessed through the URL.
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Angular’s HttpClient used for HTTP requests to the back-end offers a possibility to
retrieve data from a given URL as BLOBs. BLOB is the abbreviation for Binary
Large Object and embodies a binary data object, such as a picture or an audio file
[23]. After retrieving the BLOB through the HTTP request, it needs to be converted
to a file and then saved on the device. Ionic provides this feature through Cordova’s
"File" plug-in which offers the ability to handle the creation, deletion and usage of
locally saved files and directories. This plug-in allows Ionic to create a correspond-
ing file for the retrieved BLOB. After saving the file, the File plug-in can then be used
to create an URL from the saved file which is only valid inside the application. This
URL can then be used to bind the file to the corresponding HTML tag by settings its
resource to the URL.

5.4 Plug-ins

This section will define additional plug-ins that were used for the application. These
provide already implemented functionality to extend the framework.

5.4.1 Secure Storage

This plug-in provides the same functionality as Ionic’s local storage but uses a se-
cure storage. However, this only applies to the Android and iOS, thus making it
necessary to encrypt all data to ensure data security on the browser platform, mak-
ing the usage of this plug-in more an addition to mobile data security rather than
solving the actual issue. The plug-in can be found on GitHub [8].

5.4.2 Spinner Dialoge

To provide additional data integrity and usability, the Spinner Dialogue plug-in can
be used. This is a very simple plug-in for mobile devices making it possible to
show a loading screen. As a result of the amount of data needed to be exchanged
between application and back-end being relatively high, the synchronisation of the
mentioned data will take some time. During this time it is essential to inform the
user about the synchronisation.
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However, this plug-in is not supported on the browser platform. To provide the same
functionality for the browser, a variation of the Spinner Dialogue was implemented.
This variation runs on all platforms but is visually not as appealing as the Spin-
ner Dialogue. Hence, the Spinner Dialogue was used for mobile devices and the
self-created variation for the browser module. This plug-in was published through
GitHub [10].

5.4.3 NGX-Translate

To meet the requirement of multilingualism as defined in 3.1.4, the ngx-translate
plug-in [12] was used. This allows the translation of defined keywords into language
dependent values, thus providing the ability to create a multilingual application.

For this plug-in to run, a language JSON file is needed to be written for each lan-
guage to be covered. All needed translations are identified by a key. For each key
there is a value for each language. To demonstrate and clear-up the usage of the
plug-in, the following will provide a small example.

Presuming that the application will cover English and German and the word "imple-
mentation" will be used, it is necessary to create two language files, called "en.json"
and "de.json", one for each covered language. For additional languages, additional
files have to be created.

Before being able to translate the word "implementation", a key is needed which will
identify which word to translate. For the given word the key "IMPLEMENTATION"
will be used. For the translation to work, the defined keyword and the corresponding
translation for the language have to be added to the language files. The entry for
the english language file is defined as shown in Figure 5.13,

Figure 5.13: English language file

1 "IMPLEMENTATION" : "implementation",

while the entry for the german language file is defined analogue (Figure 5.14).
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Figure 5.14: German language file

1 "IMPLEMENTATION" : "Implementierung",

For the different translations to show, the application can now use the keyword and
the translation command provided by the plug-in. If the user chooses English as
language, the translation module’s language setting will be set to "en", leading to the
application reading from the "en.json" file. It is crucial that the module’s language
setting matches the corresponding file name.

By using the module’s translate command with a given key word, the translation
service will now read the corresponding value for the key from the set language file
and will retrieve the found translation value. In this case, the service will retrieve
"implementation" if the language is set to "en" and "Implementierung" if set to "de".
Any missing key-value pair tried to be translated will result in the key to be displayed.

5.4.4 BcryptJS And CryptoJS

For the purpose of encryption and data security, two Java Script libraries were used.
BcryptJS [9] is able to generate hashes for given parameters and supports salting of
these hashes. Hashes in cryptography are encryptions which can not be decrypted
again. This implies that it is not possible to get the plaintext password out of the
hashed password-value. This makes it a very strong tool as encryption for user
passwords. The only purpose of passwords is to authorize the user. With BcryptJS,
it is not necessary to save the plaintext password of the user in the application.

Instead of decrypting the saved password and comparing it to the value that was
typed in by the user, the entered password gets encrypted as well. BcryptJS can
now check if both hashes have the same value without the need to decrypt the
saved password. This provides a strong security for user passwords since no pos-
sibility is provided to read the plain text password of the user out of the application,
even by knowing the encryption function.
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In contrast to BcryptJS, CryptoJS [11] does not hash given values but encrypts them
using AES, meaning that data encrypted with CryptoJS can be decrypted again.
Both functions are provided by the CryptoJS plug-in. Given that most saved data
has to be readable by the application, it does not make sense to use hash functions
since this would imply that, once hashed, cannot be decrypted again. Thus, bcrypt
is used for saving passwords and CryptoJS is used for saving data like interventions
or lessons.
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6 Requirements Comparison

Given the final outcome of the application, this chapter will reflect the requirements
defined at the beginning 3 and compare them to the implementation.

6.1 Functional Requirements

1. Cross-Platform: Browser, iOs, Android
To meet this requirement, the cross-platform framework Ionic was chosen as
described in chapter 4.2. Ionic provides support for all three defined platforms,
hence meeting this requirement, although the browser platform might have its
limitations compared to iOS and Android. However, all requirements met for
mobile devices were also met for the browser.

2. Basic Account-System
Since basic account-systems usually do not differ greatly between different
software systems, the implementation of this requirement was very straight-
forward. However, the need for a local account system added more complex-
ity to it. Nevertheless, the basic account system could be implemented as
intended.

3. Account Administration
Just as the basic account-system, this functionality is common in terms of
software developing and could thus be implemented without further delay.
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4. Multilingualism
To provide full multilingualism, the application needed two different implemen-
tations for this topic. The first being the multilingualism of the application
itself, including buttons, labels, headlines and texts. For this purpose, the
plug-in ngx-translate was used as described in 5.4.3. The second implemen-
tation is related to the data loaded from the server. Content of interventions
and lessons cannot be translated with ngx-translate but have to be loaded
accordingly from the back-end. This already provides the ability to load the
corresponding data in the desired language.

Multilingualism application wide was achieved by providing the ability to set
the desired language for both the application as well as for the data loaded
from the server.

5. Authorization And Authentication
The process on how authentication and authorization works in this software
system and how it was finally handled was described precisely in Chapter
5.3.3, hence there is no need to cover this topic again. However, the require-
ment could be met as intended.

6. Offline-Usability
Taking into account that data is stored locally and thus the system can be
used while no internet connection is active, this requirement is met.

7. Displaying Interventions, Lessons And Answer-Sheets
The application provides a view for all of the listed aspects. Interventions with
their corresponding lessons can be viewed within the Home- and Intervention
Overview Page, Lessons can be viewed more detailed on the Lesson Page
and answer-sheets have their own listing for each lesson and a possibility to
be displayed completely within the Lesson Page. Thus meeting the require-
ment as defined.
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8. Filling in Lessons
Since this requirement marks the core of the application, this was the app-
lication part the most effort was used on. By trying to provide an appealing
and easy understandable view of all lesson elements for the user, this require-
ment was met. However, each user might have a different taste concerning
the presentation of the lesson elements and might or might not find the view
appealing. In addition to that, the view has not been tested on different users
yet but only by the developer. Future developers might want to change the
view if users appear to dislike it.

9. Quick-Saving Answers
Quick-saving answers for all lessons was implemented successfully, however,
for data integrity reasons quick-saved answers are deleted if the user changes
the language of the interventions and lessons loaded from server. Future
developers might want to extend this feature.

10. Reminder
After having used enough time to figure out how the Local Notification plug-in
(5.3.8) works as intended for ionic, it was possible to meet the requirement
of weekly reminders for each unfinished lesson. This includes notifications
while the app is opened on the device and while it is closed. However, the
browser platform does not support the usage of notifications, resulting in the
requirement only being met on Android and iOS.
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6.2 Non-Functional Requirements

As non-functional requirements do not describe features and functionalities of the
application, no concrete statements can be made if the application meets these
requirements or not. Given that no testing with real users could have been done
yet, the only statement that can be made is a personal assessment concerning
these requirements.

1. Security
By using BcryptJS, CryptoJS and the secure storage the intention was to build
an application as secure as possible. However, the need to save a encrypted
but not hashed user password after a successful offline login might mark an
improvable part in terms of confidentiality. Additionally, the missing ability
of the browser to use secure storage and only use the local storage is not
desirable.

2. Usability
The application was implemented with the goal of making the application as
self sufficient as possible. This was tried to be achieved by building an easy
structure of the app, using Ionic’s self-defined html elements as introduced in
4.2 to provide visually appealing page elements and using additional CSS to
support the user’s understanding.

3. Maintainability
The modularity given through Ionic’s basic application structure enhances the
maintainability of this application. Additionally, it eases the addition of new
features by simply adding more modules or changing existing ones.

4. Modularity
As a result of Ionic’s basic application structure, modularity is already at a high
level. This structure is described more precisely in 4.3. Each page, provider
and component used is a stand-alone module that can the exchanged, altered
or removed.
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This chapter concludes the work by providing a small summary, a reflection of made
decisions and a short outlook on how the system might be used and expanded in
the future.

7.1 Summary

As no fitting software system is provided due to missing flexibility and missing func-
tionality for the usage of KLIPS, a software system consisting of four different parts
was planned. The goal for this work was the implementation of the Patient-Module,
being one of the four software parts. To ensure that the planned application for
the Patient-Module could provide all features needed, a list of requirements was
formed. However, the application as planned by KLIPS is very future orientated in
terms of functionality and used technology. As the implementation of the desired
functionalities is not realistic for the amount of time given to implement, the require-
ments were shortened to provide a first version covering the most important and
basic features which can be expanded in the future.

The application was then defined to be a cross-platform application to meet the
desired concept of IBIs. For this purpose, the cross-platform framework Ionic was
chosen to realize the application on mobile devices as well as on browsers. Be-
fore implementing the needed features with the given framework, it was essential to
provide a basic design for the application, given mainly through the software archi-
tecture as provided by Ionic to ensure the outcome of the application to meet the
desired requirements. Additionally, the process of the implementation was planned
before and used existing approaches known from software engineering. These in-
cluding issue tracking and the agile development method SCRUM.
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After having implemented the application itself, the final outcome was compared
to the initially defined requirements. Fortunately, these could be met accordingly.
Since the desired software system as requested from KLIPS features more func-
tionality than this first version of the application provides, it is much likely that it will
be expanded in the future.

7.2 Reflection Of Decisions And Technology

Many decisions made while designing the application were based on given infor-
mation gained through documentations and the experience provided by other de-
velopers, but not on the own experience. Hence, after having implemented the
application with the chosen technologies, it might be interesting to reflect the deci-
sions made beforehand. This Chapter reflects the design choices made before the
implementation.

7.2.1 Ionic - Angular

After using Ionic as framework, Ionic feels like a strong tool for cross-platform devel-
opment. This is mainly achieved through the usage of Angular as well as a easy un-
derstandable basic project structure. By providing already defined HTML elements
with different styling for each platform, Ionic offers a helpful tool for easy and fast
creation of views. This relieves the developer and takes off the need to define view
elements for the different platforms which is usually a time-intensive task. Further-
more, the usage of Angular and its modules such as HttpClient and HttpInterceptor
offer great possibilities especially in terms of client-back-end communication with
the HTTP protocol. In case of this application, these modules take care of data
exchange between the application and the back-end. Additionally, Ionic provides a
modular application structure for higher modularity and maintainability without re-
stricting the developer in his possibilities. This structure is given from the start of
a project, hence maintaining modularity during the implementation process is quite
simple. Finally, Ionic provides a great amount of possible plug-ins that can be used,
not only from Ionic itself but also by wrapping Cordova. This allows the usage of
Cordova’s as well as Ionic’s own plug-ins.
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Although offering many tools and advantages, Ionic also has its downsides. As
described in 5.3.7, the usage of DIs comes with the advantage of high modularity
and performance, but requires a careful construction of the different modules to
prevent circular dependencies. Also, some plug-ins from both Ionic and Cordova do
not work on the browser platform. This might lead to the need to implement already
existing functionality again to use them on the browser platform. Having not worked
with either Ionic or Angular before, the amount of initial effort that has to be made
was relatively high. Like DIs, this is not an actual problem but has to be taken in
account when working with Ionic and Angular the first time.

Taking the stated properties into consideration, I would recommend the usage of
Ionic and would use it again. Although having trouble at the start of new functionality
due to the small amount of knowledge temporarily, Ionic is a strong tool for cross-
platform development at the end.

7.2.2 Ionic’s Local Storage And Secure Storage

Ionic offers powerful possibilities for storage purposes. However, the browser plat-
form does not support most of them. This led to the usage of the secure storage
and the local storage instead of a database. Hence, the data structure for saved
data is JSON in key-value storages. This scales bad for large data volume. At the
current state, this is no big problem but might get confusing with increasing amount
of data.

Since the requirements define offline usage for browser platform too, the only other
option is a database mock for the browser platform to be able to use real databases
on the device. With the knowledge of the application being most likely extended
in the future, this might have been a better solution than the usage of key-value
storages.

66



7 Conclusion

7.2.3 Issue Tracking

As described in 5.1.2, the observable, formal issue tracking was switched out for
better team management. Although this worked out really well and saved time for
myself, the possibility of tracking these issues for other parties involved in the soft-
ware system such as other developers or the supervisor got lost. Since meetings
with all other team-members and the supervisor were held weekly, this was not
needed compulsorily but would have increased the overall observability.

Considering these factors, it would have made sense to use any kind of formal and
observable issue tracker for this application.

7.3 Outlook

This section addresses the future work that might or might not be implemented
after the work for this project is done. This will most likely be addressed by other
developers. The following topics already cover future requirements collected by the
institute meeting (see 3) partially.

7.3.1 Local Storage

With expanding amount of data to be stored on the client side, it should be con-
sidered to remove the ability for offline-usage for the browser platform since this
platform usually has connection to the internet. This would offer the possibility to
use stronger and better scaling storages than key-value storages. Also, the security
for the stored data can be secured more easily.

If this is no possible option, the usage of a database mock for the browser platform
might help the overall observability and understanding of the structure the storage
uses.

67



7 Conclusion

7.3.2 Expanding Reminders

Reminders currently are fixed notifications for mobile devices which will appear each
week for each unfinished lesson. The possibilities for this feature can cover much
more use cases and might be expanded in the future. Users might want to person-
alize their reminders in terms of how often and when they appear.

Since the notifications used for these reminders only work on devices and not on the
browser platform, the provision of the possibility to set not only device notifications
but reminders in form of emails or any other not platform dependent reminder should
be considered.

7.3.3 Communication Of E-Coach And User

Considering that the software system will most likely want to support guided IMIs,
a possibility for communication between e-coach and patient might be needed. For
this purpose, some kind of textual chat system will most likely be wanted. Even for
non-guided IMIs is might be interesting for the user to receive feedback from the
corresponding e-coach. Since this will run on mobile devices, access and usability
of the chat system should be easy and self-sufficient.

7.3.4 Conditional Components

This feature is related to the process of filling in lessons. For usability and a higher
possibility provided by lessons it is desired that elements can depend on each other.
This should be implemented through conditional contents. E-coaches might want
to only show elements of a lesson if specific conditions are met, for example if
a specified question element was answered with a specific answer. This feature
would provide more possibilities for extended lessons and interventions.

7.3.5 Offline Mode

For offline usability, the application checks if it is connected to a network. If not, it
will go into offline mode, meaning it will prevent the sending of all requests and will
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work with the data saved locally until an active connection is retrieved.

The challenge is to actually detect missing internet connection instead of missing
network detection. The application will try to send requests if it is connected to a
network but not to the internet due to missing internet connection of the network. A
reasonable detection for missing internet connection is needed for the future.

7.3.6 Personalization

For the purpose of user comfort while using the application, users might want to
personalize the application to their personal preference. This might include different
backgrounds, profile pictures or any other possible personalization option.
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